The FPU Recurrence Model of the Protein Synthesis

The paper suggests a theoretical model of the physical mechanism of recognizing and joining of the transport RNA molecules with the information RNA molecules on the basis of the Fermi-Pasta-Ulam (FPU) recurrence and the group resonance phenomena. Both were experimentally observed in plasma dynamics. The suggested mathematical model represents two coupled nonlinear Shrodinger equations for the description of interaction between the FPU recurrence electric fields in the chains of the tRNA and iRNA molecules.
The results of numerical study of the model of dynamics of the tRNA and iRNA molecules in the intracellular solution allow making a conclusion that in a cell there exists a physical mechanism of recognizing, attracting and repelling between the tRNA and iRNA molecules, providing the synthesis of protein. This mechanism is based on the FPU recurrence, whose spectrum structure gives a pattern – matrix for building a protein. Such resonant dynamics is generally characteristic for the dynamics of interaction between the FPU recurrences, in particular the elementary FPU recurrence of the tRNA molecule electrical field and full FPU recurrence of the iRNA molecule electrical field.
Moreover, the suggested physical mechanism allows offering a method of external influence on a cell aiming at acceleration of the protein synthesis in it by the applying electromagnetic fields in a form of the FPU recurrence spectrum.
As it is known, the genetic information is transferred to ribosomes via molecules of the information RNA. The latter is synthesized on a gene along one of two spirals of the DNA molecule on the basis of the complementarities principle of the bases. One information RNA molecule contains the sequence of nucleotides, complementary to one that served as a matrix, and is identical to the sequence of the second spiral of the DNA molecule.
Information RNA is attached to ribosomes. Various amino acids with the help of specific enzymes join the transport RNA molecules, specific to each amino acid. The transport RNA with the amino acid attached to it "recognizes" among the sequence of the information RNA nucleotides the triplet encoding the amino acid being carried. The "recognizing" of it is carried out thanks to the complementary triplet –anticodon, allowing them to join temporarily. If the codon is complementary to the information RNA triplet, the amino acid is disconnected from the transport àÃÂÂÂÂÂÚ and joins the growing protein sequence. However, the described sophisticated mechanism, as well as many other mechanisms of biological processes, which have only verbal descriptions of the sequences of actions are not yet physically explained. The physical bases of the processes which don’t contain any conscious actions, in particular, "recognizing" and joining the transport RNA, having the amino acid, with the molecule of the information RNA among chaotically moving molecules of the intracellular solution is not found out yet.
The purpose of the paper was to develop a theoretical model of the physical mechanism of recognizing and joining of the transport RNA molecules with the information RNA molecules on the basis of the FPU recurrence and the group resonance phenomena. The group resonance approach has been used in the theory of plasma for describing the dynamics of the particle movement in the field of a wave packet. This problem comprises many characteristic features typical for various physical situations. The formal description of the problem is expressed as follows:
(1)
Where x-is the coordinate, q-is the particle charge, m-is the particle mass, Σ -is the wave packet of the field acting on the particle.
Together with this, the FPU recurrence, proved to be the main characteristic property of distributed dynamic systems including plasma, also looks as a useful tool for modeling the process under consideration.
With Regards,
Sara Giselle
Associate Managing Editor
Journal of Medical Physics and Applied Sciences